Grant, G. J., Carpenter, J. P., Setzer, W. N. \& VanDerveer, D. G. (1991). Inorg. Chem. 30, 4053-4056.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Wieghardt, K., Küppers, H.-J., Raabe, E. \& Krüger, C. (1986). Angew. Chem. Int. Ed. Engl. 25, 1101-1103.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1996). C52, 882-884

Diethylgallium Diphenylphosphinate

Darren J. Browning, Judith M. Corker and
Michael Webster*
Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England. E-mail: m.webster@soton.ac.uk

(Received 3 October 1995; accepted 20 October 1995)

Abstract

The title compound, $\operatorname{bis}\left(\mu\right.$-diphenylphosphinato- $\left.O: O^{\prime}\right)$ bis(diethylgallium), $\left[\mathrm{Ga}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{P}\right)_{2}\right]$, contains discrete centrosymmetric molecules, each of which contains a puckered eight-membered $(\mathrm{Ga}-\mathrm{O}-\mathrm{P}-\mathrm{O})_{2}$ ring. There are two crystallographically distinct molecules in the unit cell. The $\mathrm{Ga}-\mathrm{O}$ bond distances range from 1.936 (2) to 1.946 (2) \AA, while the $\mathrm{P}-\mathrm{O}$ distances range from 1.513 (2) to 1.525 (2) \AA.

Comment

The title compound, (I), is of interest as a model compound for gallophosphate molecular sieves such as cloverite (Estermann, McCusker, Baerlocher, Merrouche \& Kessler, 1991). Only a small amount of work has been carried out in this area and few compounds have been characterized fully. Coates \& Mukherjee (1964) prepared the corresponding methyl derivative, $\left[\mathrm{GaMe}_{2}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{2}$, and proposed a dimeric structure on the basis of IR and solution molecular-weight measurements.

The crystal structure of the title compound is found to contain discrete centrosymmetric molecules and the

(I)
asymmetric unit comprises two crystallographically independent half molecules. The structure of one of the molecules of $\left[\mathrm{Et}_{2} \mathrm{Ga}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{2}$ is shown in Fig. 1. The molecules possess crystallographically imposed $\overline{1}$ symmetry and contain a puckered eight-membered ring in which the four O atoms are, therefore, coplanar. In each ring, the four O atoms and two P atoms are close to being coplanar, with the two Ga atoms displaced out of this plane; displacements from the plane of the four O atoms are 0.044 (1) for Pl and 1.113 (1) \AA for Gal of molecule 1, and -0.206 (1) for P2 and 0.941 (1) \AA for Ga 2 of molecule 2 .

Fig. 1. The molecular structure of $\left[\mathrm{Et}_{2} \mathrm{Ga}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{2}$ (molecule 1 ; molecule 2 is very similar) showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are excluded for clarity. [Symmetry code: (i) $-x+1,-y-1$, $-z$.

The geometry at the Ga and P atoms is approximately tetrahedral. The $\mathrm{Ga}-\mathrm{O}$ bond distances are all very similar $[1.936(2)-1.946(2) \AA]$, as are the P O bond distances $[1.513(2)-1.525(2) \AA$]. The $\mathrm{P}-\mathrm{O}-$ Ga angles are in the range $129.70(13)-141.79(14)^{\circ}$. The Ga-C distances [1.960 (3)-1.967 (3) \AA] are within the expected range (Hahn, Schneider \& Reier, 1990). Cryoscopic molecular-weight measurements in benzene (r.m.m. 705 ± 25) established that the dimeric species persists in solution.

The compound shows the same cyclic structure as $\left[\mathrm{Me}_{2} \mathrm{Ga}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{2}$, where a similar deviation from planarity was observed (Hahn, Schneider \& Reier, 1990). A similar ring system has been found in aluminium phosphinate compounds such as $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{2}$ (Corker, Browning \& Webster, 1996), but in this case the eightmembered ring was found to be nearly planar.

Experimental

Working under argon, the title compound was prepared by slowly adding GaEt_{3} (3.4 mmol) dissolved in toluene to a cold (210 K) suspension of diphenylphosphinic acid (3.4 mmol) in toluene. The solution was allowed to warm slowly to room temperature and after stirring for 6 h , a clear solution had formed. Removal of the volatiles gave the required product in high yield and colourless crystals were obtained from toluene. The crystal was mounted in oil on a glass fibre for the lowtemperature X-ray examination.

Crystal data

$\left[\mathrm{Ga}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{P}\right)_{2}\right.$]
$M_{r}=690.02$
Triclinic
$P \overline{1}$
$a=10.995$ (2) \AA
$b=14.837$ (3) \AA
$c=10.316(2) \AA$
$\alpha=102.63(2)^{\circ}$
$\beta=96.95$ (2)
$\gamma=83.16(2)^{\circ}$
$V=1622.6(6) \AA^{3}$
$Z=2$
$D_{x}=1.412 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7S diffractometer

$$
\theta_{\max }=25.0^{\circ}
$$

$\omega / 2 \theta$ scans

$$
k=-17 \rightarrow 17
$$

$$
l=-12 \rightarrow 12
$$

$R(F)=0.0308$
$S=1.020$
5701 reflections
361 parameters refined

$$
R_{\mathrm{int}}=0.0183
$$ reflections

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$ reflections
$\theta=20.2-23.1^{\circ}$
$T=150 \mathrm{~K}$
Rhombic
Colourless

$$
h=0 \rightarrow 13
$$

Absorption correction: ψ scan (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.74, \quad T_{\text {max }}=1.00$
6027 measured reflections
5701 independent reflections
4596 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$w R\left(F^{2}\right)=0.0894$

H -atom parameters not

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.048 P)^{2}\right. \\
&+1.28 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

3 standard reflections monitored every 150
intensity decay: 0.2%
Cell parameters from 25
$\mu=1.793 \mathrm{~mm}^{-1}$
$0.6 \times 0.4 \times 0.3 \mathrm{~mm}$

P2	$0.89380(7)$	$0.05315(5)$	$0.67815(7)$	$0.0216(2)$
O1	$0.6693(2)$	$-0.46518(14)$	$0.0654(2)$	$0.0272(4)$
O2	$0.5008(2)$	$-0.58984(14)$	$0.1039(2)$	$0.0270(4)$
O3	$0.8498(2)$	$0.08904(15)$	$0.5524(2)$	$0.0309(5)$
O4	$0.9806(2)$	$0.00205(13)$	$0.3184(2)$	$0.0256(4)$
C1	$0.7401(3)$	$-0.4173(2)$	$-0.1462(3)$	$0.0232(6)$
C2	$0.7203(3)$	$-0.3703(2)$	$-0.2512(3)$	$0.0321(7)$
C3	$0.8073(3)$	$-0.3821(2)$	$-0.3419(3)$	$0.0380(8)$
C4	$0.9138(3)$	$-0.4398(2)$	$-0.3273(3)$	$0.0402(8)$
C5	$0.9352(3)$	$-0.4865(2)$	$-0.2238(3)$	$0.0376(8)$
C6	$0.8480(3)$	$-0.4750(2)$	$-0.1319(3)$	$0.0307(7)$
C7	$0.6238(3)$	$-0.2818(2)$	$0.0609(3)$	$0.0224(6)$
C8	$0.5172(3)$	$-0.2213(2)$	$0.0566(3)$	$0.0291(7)$
C9	$0.5145(3)$	$-0.1313(2)$	$0.1330(3)$	$0.0351(7)$
C10	$0.6190(3)$	$-0.1018(2)$	$0.2117(3)$	$0.0342(7)$
C11	$0.7261(3)$	$-0.1606(2)$	$0.2157(3)$	$0.0351(7)$
C12	$0.7287(3)$	$-0.2506(2)$	$0.1399(3)$	$0.0305(7)$
C13	$0.4671(3)$	$-0.3846(2)$	$0.2705(3)$	$0.0299(7)$
C14	$0.5163(4)$	$-0.3077(2)$	$0.3819(4)$	$0.0446(9)$
C15	$0.7171(3)$	$-0.5482(2)$	$0.3224(3)$	$0.0324(7)$
C16	$0.6643(4)$	$-0.5792(3)$	$0.4331(4)$	$0.0442(9)$
C17	$0.9004(3)$	$0.1483(2)$	$0.8198(3)$	$0.0233(6)$
C18	$0.8052(3)$	$0.2192(2)$	$0.8329(3)$	$0.0327(7)$
C19	$0.8086(3)$	$0.2919(2)$	$0.9431(4)$	$0.0376(8)$
C20	$0.9082(3)$	$0.2945(2)$	$1.0393(3)$	$0.0386(8)$
C21	$1.0032(3)$	$0.2255(3)$	$1.0268(3)$	$0.0397(8)$
C22	$0.9999(3)$	$0.1511(2)$	$0.9175(3)$	$0.0302(7)$
C23	$0.7766(3)$	$-0.0155(2)$	$0.7010(3)$	$0.0234(6)$
C24	$0.7841(3)$	$-0.0501(2)$	$0.8178(3)$	$0.0283(6)$
C25	$0.6958(3)$	$-0.1037(2)$	$0.8368(4)$	$0.0364(7)$
C26	$0.5994(3)$	$-0.1240(2)$	$0.7383(4)$	$0.0381(8)$
C27	$0.5909(3)$	$-0.0904(2)$	$0.6227(3)$	$0.0377(8)$
C28	$0.6792(3)$	$-0.0358(2)$	$0.6041(3)$	$0.0308(7)$
C29	$1.0457(3)$	$0.2018(2)$	$0.4721(3)$	$0.0370(8)$
C30	$1.0115(3)$	$0.2912(2)$	$0.5703(4)$	$0.0436(9)$
C31	$0.7583(3)$	$0.1488(2)$	$0.2897(3)$	$0.0379(8)$
C32	$0.7559(4)$	$0.0986(3)$	$0.1468(3)$	$0.0456(9)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},\right)^{\circ}$

Gal-O1	1.941 (2)	$\mathrm{Pl}-\mathrm{Ol}$	1.525 (2)
$\mathrm{Ga} 1-\mathrm{O} 2$	1.938 (2)	$\mathrm{Pl}-\mathrm{O}^{\prime}$	1.517 (2)
$\mathrm{Ga} 1-\mathrm{C} 13$	1.967 (3)	$\mathrm{Pl}-\mathrm{Cl}$	1.795 (3)
$\mathrm{Ga} 1-\mathrm{C} 15$	1.960 (3)	$\mathrm{PI}-\mathrm{C} 7$	1.795 (3)
$\mathrm{Ga} 2-\mathrm{O} 3$	1.936 (2)	$\mathrm{P} 2-\mathrm{O} 3$	1.513 (2)
Ga2-O4	1.946 (2)	P2-O4"	1.520 (2)
$\mathrm{Ga} 2-\mathrm{C} 29$	1.963 (3)	P2-C17	1.798 (3)
$\mathrm{Ga} 2-\mathrm{C} 31$	1.965 (3)	$\mathrm{P} 2-\mathrm{C} 23$	1.802 (3)
$\mathrm{O} 1-\mathrm{Ga}-\mathrm{O} 2$	96.14 (9)	$\mathrm{Ol}-\mathrm{Pl}-\mathrm{C} 7$	109.57 (12)
$\mathrm{Ol}-\mathrm{Ga} 1-\mathrm{Cl} 3$	110.00 (11)	$\mathrm{Cl}-\mathrm{Pl}-\mathrm{C} 7$	107.75 (13)
$\mathrm{Ol}-\mathrm{Gal}-\mathrm{Cl} 5$	106.37 (11)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O}^{11}$	116.70 (12)
$\mathrm{O} 2-\mathrm{Ga}-\mathrm{Cl} 3$	107.85 (11)	O3-P2-C17	109.96 (13)
$\mathrm{O} 2-\mathrm{Ga} 1-\mathrm{Cl} 5$	104.99 (12)	O4"-P2-C17	106.41 (13)
C13-Gal-C15	127.06(13)	O3-P2-C23	106.01 (13)
O3-Ga2-O4	98.08 (9)	O4"-P2-C23	110.59 (12)
$\mathrm{O} 3-\mathrm{Ga} 2-\mathrm{C} 29$	108.59 (12)	C17-P2-C23	106.80 (13)
$\mathrm{O} 4-\mathrm{Ga} 2-\mathrm{C} 29$	107.89 (11)	$\mathrm{Pl}-\mathrm{Ol}-\mathrm{Gal}$	129.70 (13)
$\mathrm{O} 3-\mathrm{Ga} 2-\mathrm{C} 31$	102.96(13)	$\mathrm{Pl}^{\prime}-\mathrm{O} 2-\mathrm{Gal}$	136.39 (13)
$\mathrm{O} 4-\mathrm{Ga} 2-\mathrm{C} 31$	105.07 (12)	P2-O3-Ga2	141.79 (14)
C29-Ga2-C31	129.8 (2)	$\mathrm{P} 2^{\prime \prime}-\mathrm{O} 4-\mathrm{Ca} 2$	136.61 (13)
$\mathrm{O} 2^{1}-\mathrm{Pl}-\mathrm{Ol}$	116.44 (12)	$\mathrm{Cl} 4-\mathrm{Cl3}-\mathrm{Gal}$	115.0 (2)
$\mathrm{O} 21-\mathrm{Pl}-\mathrm{Cl}$	110.26(13)	C16-C15-Gal	111.9 (2)
$\mathrm{Ol}-\mathrm{Pl}-\mathrm{Cl}$	106.45 (13)	$\mathrm{C} 30-\mathrm{C} 29-\mathrm{Ga} 2$	114.9 (2)
O2'-P1-C7	106.10 (13)	C32-C31-Ga2	115.6 (2)

H atoms were placed in observed positions with a fixed displacement parameter and not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976).

We would like to thank the EPSRC for support (DJB) and for funds to purchase the X-ray diffractometer.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the $\mathrm{\Pi UCr}$ (Reference: BM1040). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Coates, G. E. \& Mukherjee, R. N. (1964). J. Chem. Soc. pp. 12951303.

Corker, J. M., Browning, D. J. \& Webster, M. (1996). Acta Cryst. C52, 583-585.
Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A. \& Kessler, H. (1991). Nature (London), 352, 320-323.
Hahn, F. E., Schneider, B. \& Reier, F.-W. (1990). Z. Naturforsch. Teil $B, 45,134-140$.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Sofiware. MSC, 3200 Research Forest Drive, The WoodIands, TX 77381, USA.
Molecular Structure Corporation (1992). TEXSAN. Structure Analysis Package, revised edition. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 884-887

Iodotris(triphenylphosphine)silver(I), [$\left.\mathbf{A g}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{I}\right]$

David E. Hibbs, ${ }^{a}$ Michael B. Hursthouse, ${ }^{a}$ K. M. Abdul Malik, ${ }^{a}$ Michael A. Beckett ${ }^{b}$ and Phill W. Jones ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Wales, Cardiff, PO Box 912, Park Place, Cardiff CF1 3TB, Wales, and ${ }^{b}$ Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, Wales. E-mail: sackam@cardiff.ac.uk

(Received II July 1995; accepted 6 November 1995)

Abstract

The geometry about the Ag atom in the title complex, $\left[\mathrm{AgI}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{3}\right]$, is distorted tetrahedral with the $\mathrm{Ag}-\mathrm{I}$ bond length 2.8660 (11) \AA and $\mathrm{Ag}-\mathrm{P}$ distances 2.5335 (14), 2.5589 (12) and 2.6814 (12) \AA. The $\mathrm{P}-\mathrm{Ag}-\mathrm{P} / \mathrm{I}$ angles show large variations [104.54(3)$116.10(4)^{\circ}$] from the ideal tetrahedral value (109.45°).

These distortions, as well as those around the P atoms in the three triphenylphosphine ligands, may be attributed to several intramolecular ($\mathrm{H} \cdots \mathrm{I}$ and $\mathrm{H} \cdots \mathrm{C} / \mathrm{H}$) short contacts.

Comment

A number of tris(triphenylphosphine)silver(I) derivatives of the type $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{3} X\right]$ have been characterized by X-ray crystallography: $X=\mathrm{Cl}$ (Cassel, 1981), $X=\mathrm{Cl}, \mathrm{Br}$ or I (Englehardt, Healy, Patrick \& White, 1987), $X=\mathrm{I}, \mathrm{BF}_{4}$ (Camalli \& Caruso, 1987), and $X=\mathrm{NO}_{3}$ (Barron et al., 1986; Bruce \& Duffy, 1986). All these complexes are molecular species, in each of which the Ag atom has distorted tetrahedral geometry. The nitrate derivative is monoclinic and isostructural with the room-temperature (RT) iodide structure reported by Englehardt et al. (1987), with the N atom of the bidentate nitrate group occupying almost the same position as the I atom. In the BF_{4} complex there is one $\mathrm{Ag}-\mathrm{F}$ interaction which is long [2.82 (1) \AA], but it definitely indicates a bonding (albeit weak) interaction. The RT iodide structure reported

(I)
by Englehardt et al. (1987) is monoclinic with one long and two short $\mathrm{Ag}-\mathrm{P}$ bonds [2.780 (3), 2.544 (2) and 2.573 (3) \AA] , while the structure reported by Camalli \& Caruso (1987) is triclinic with the Ag-P bonds falling within a narrow range $[2.572(4)-2.616(3) \AA]$. We undertook an X-ray study of the complex at 140 K (low temperature, LT) to obtain more accurate data and confirm the unusual variations in the reported molecular geometry parameters. The LT structure reported here (Fig. 1) is isostructural with the RT monoclinic form reported by Englehardt et al. (1987).

The Ag^{I} centre is tetrahedral with one $\mathrm{Ag}-\mathrm{P}$ bond [2.6814 (12) \AA] much longer than the other two [2.5335 (14) and 2.5589 (12) \AA]. These values follow the trend observed in the RT monoclinic structure (Englehardt et al., 1987), but in the latter case the longest $\mathrm{Ag}-\mathrm{P}$ bond is $c a 0.10 \AA$ longer than the corresponding value in our structure. The situation is somewhat dif-

[^0]
[^0]: (C) 1996 International Union of Crystallography

 Printed in Great Britain - all rights reserved

